2022 Annual Drinking Water Quality Report City of San Antonio PWS ID # 6510325

We're pleased to present to you this year's Annual Water Quality Report. This report is designed to inform you about the quality water and services we deliver to you evely day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. Our water source is ground water from four wells that draw ji-om the <u>Floridan Aquifer</u>. The type of disinfection used is hypochlorite.

In 2022, the Department of Environmental Protection performed a Source Water Assessment on our system. The assessment was
conducted to provide information about any potential sources of contamination in the vicinity of our wells. There are two potential
sources of contamination identified for this system with a low concern level. The assessment results are available on the FDEP
Source Water Assessment and Protection Program website at https://prodapps.dep.state.fl.us/swapp/. We are pleased to
report that our drinking water meets all federal and state requirements.

If you have any questions about this report or concerning your water utility, please contact Will Plazewski at 352-588-2127 City Hall, 32819 Pennsylvania Ave. San Antonio, Florida 33576.

We encourage you to be informed about the City of San Antonio's water utility. If you want to learn more, please attend our regularly scheduled commission meetings. They are held on the third Tuesday of each month. If you want to learn more, please contact City Hall during normal business hours.

The City of San Antonio *routinely monitors for contaminants in your drinking water according to Federal and State laws, rules, and regulations. Except where indicated otherwise, this report is based on the results of our monitoring for the period of January 1 to December 31, 2022. Data obtained before January 1, 2022, and presented in this report are from the most recent testing done in accordance with the laws, rules, and regulations.*

In the table below, you may find unfamiliar terms and abbreviations. To help you better understand these terms we've provided the following definitions:

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum residual disinfectant level or MRDL: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum residual disinfectant level goal or MRDL: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Action Level (AL): The concentration of a contaminant that, if exceeded, triggers treatment or other requirements that a Water system must follow.

<u>Initial Distribution System Evaluation</u> (JDSE): An important part of the Stage 2 Disinfection Byproducts Rule (DBP R). The IDSE is a one-time study conducted by water systems to identify distribution system locations with high concentrations of trihalomethanes (THMs) and haloacetic acids (HAAs). Water systems will use results from the IDSE, in conjunction with their Stage 1 DBPR compliance monitoring data, to select compliance monitoring locations for the Stage 2 DBPR.

<u>Treatment Technique</u> (TT): A required process intended to reduce the level of a contaminant in drinking water Maximum residual disinfectant level goal or MRDLG: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs to not reflect the benefits of the use of disinfectants to control microbial contaminants.

"ND" means not detected and indicates that the substance was not found by laboratory analysis.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part by weight of analyte to I million parts by weight of the water sample.

<u>Parts per billion</u> (ppb) or Micrograms per liter (ug/l)- one part by weight of analyte to I billion parts by weight of the water sample. Picocurie per liter (pCi/L) - measure of the radioactivity in water.

Radioactive Contaminants

Contaminant and Unit of Measurement	Dates of sampling (1110/yr)	MCL Violation <i>YIN</i>	Level Detected	Range of Results	MCLG	MCL	Likely Source of Contamination
Alpha emitters (pCi/L)	1/2022	Z	3.4	N/A	0	15	Erosion of natural deposits
Radium226 + 228 or combined radium (pCi/L)	1/2022	Ν	1.6 x	N/A	0	5	Erosion of natural deposits

Contaminant and Unit of Measurement	Dates of Samplin g (mo./yr.)	MCL Violation <i>YIN</i>	Level Detected	Range of Results	MCL G	MC L	Likely Source of Contamination
Inorganic Contamin	nants						
Arsenic (ppb)	11/2021	N	0.73	0.72- 0.73	NI A	10	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes
Barium (ppm)	11/2021	Ν	0.005	0.0055	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
Nitrate (as Nitrogen) (ppm)	12/2022	Ν	3.1	3.1-3.1	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Sodium (ppm)	11/2021	Ν	7.6	6.6-7.6	N/A	160	Salt water intrusion, leaching from soil

Stage 1 Disinfectants and Disinfection By-Products

For bromate, chloramines, or chlorine, the level detected is the highest running annual average (RAA), computed quarterly, of monthly averages of all samples collected. The range of results is the range of results of all the individual samples collected during the past year.

Disinfectant or Contaminant and Unit of Measurement	Dates of samplin g (mo/yr)	MCL or MRDL Violatio n <i>YIN</i>	Level Detecte d	Range of Results	MCLG or MRDL G	MCL or MRDL	Likely Source of Contamination
Chlorine (ppm)	1/2022- 12/2022	Ν	1.17	0.90-1.47	MRDL G=4	MRDL= 4.0	Water additive used to control microbes

Stage 2 Disinfectants and Disinfection By-Products Refer to Section 7 instructions, Note 3										
Haloacetic Acids (HAAS) (ppb)	7/2022	Ν	11.18	1.09-11.18	NIA	60	By- product of drinking water disinfecti on			
Total Trihalomethanes (TTHM) (ppb)	7/2022	Ν	24.17	6.49-24.17	N/A	80	By- product of drinking water disinfecti on			

AL 90th No. of sampling AL Dates of Contaminant and Unit Likely Source of Violation *YIN* sites exceeding Percentile sampling (mo./vr.) MCLG (Action Contamination of Measurement Result the AL Levell Lead and Copper (Tap Water) Corrosion of household plumbing systems; erosion Copper (tap water) of natural deposits; leaching 9/2020 Ν 0.13 1.9 1.3 (ppm) 0 from wood preservatives

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing City of San Antonio is responsiblefor providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

(A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

(B) Inorganic contaminants, such as salts and metals, which can be naturally occurring or results from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

(*C*) Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

(D) Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.

(*E*) Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the EPA prescribes regulations, which limit the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

We at the City of San Antonio work tirelessly to provide top quality water to every tap. We ask that all our customers help us protect our water sources, which are the heart of our community, our way of life, and our children's future.